Quasi-classical -dressing approach to the weakly dispersive KP hierarchy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi - classical ∂̄ - dressing approach to the weakly dispersive KP hierarchy

Recently proposed quasi-classical ∂̄-dressing method provides a systematic approach to study the weakly dispersive limit of integrable systems. We apply the quasi-classical ∂̄-dressing method to describe dispersive corrections of any order. We show how calculate the ∂̄ problems at any order for a rather general class of integrable systems, presenting explicit results for the KP hierarchy case. We ...

متن کامل

Dressing Method and the Coupled KP Hierarchy

The coupled KP hierarchy, introduced by Hirota and Ohta, are investigated by using the dressing method. It is shown that the coupled KP hierarchy can be reformulated as a reduced case of the 2-component KP hierarchy.

متن کامل

A new extended discrete KP hierarchy and generalized dressing method

Abstract Inspired by the squared eigenfunction symmetry constraint, we introduce a new τk-flow by “extending” a specific tn-flow of discrete KP hierarchy (DKPH). We construct extended discrete KPH (exDKPH), which consists of tnflow, τk-flow and tn evolution of eigenfunction and adjoint eigenfunctions, and its Lax representation. The exDKPH contains two types of discrete KP equation with self-co...

متن کامل

q-analogue of modified KP hierarchy and its quasi-classical limit

A q-analogue of the tau function of the modified KP hierarchy is defined by a change of independent variables. This tau function satisfies a system of bilinear q-difference equations. These bilinear equations are translated to the language of wave functions, which turn out to satisfy a system of linear q-difference equations. These linear q-difference equations are used to formulate the Lax for...

متن کامل

The Kp Hierarchy ,

The KP hierarchy is a completely integrable system of quadratic, partial differential equations that generalizes the KdV hierarchy. A linear combination of Schur functions is a solution to the KP hierarchy if and only if its coefficients satisfy the Pï ucker relations from geometry. We give a solution to the Pï ucker relations involving products of variables marking contents for a partition, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2003

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/36/47/010